135,059 research outputs found

    Dynamical Instability of Shear-free Collapsing Star in Extended Teleparallel Gravity

    Get PDF
    We study the spherically symmetric collapsing star in terms of dynamical instability. We take the framework of extended teleparallel gravity with non-diagonal tetrad, power-law form of model presenting torsion and matter distribution as non-dissipative anisotropic fluid. The vanishing shear scalar condition is adopted to search the insights of collapsing star. We apply first order linear perturbation scheme to metric, matter and f(T)f(T) functions. The dynamical equations are formulated under this perturbation scheme to develop collapsing equation for finding dynamical instability limits in two regimes such as Newtonian and post-Newtonian. We obtain constraint free solution of perturbed time dependent part with the help of vanishing shear scalar. The adiabatic index exhibits the instability ranges through second dynamical equation which depend on physical quantities such as density, pressure components, perturbed parts of symmetry of star, etc. We also develop some constraints on positivity of these quantities and obtain instability ranges to satisfy the dynamical instability condition.Comment: 21 pages; Accepted in EPJC for publicatio

    Subexponential instability implies infinite invariant measure

    Full text link
    We study subexponential instability to characterize a dynamical instability of weak chaos. We show that a dynamical system with subexponential instability has an infinite invariant measure, and then we present the generalized Lyapunov exponent to characterize subexponential instability.Comment: 7 pages, 5 figure

    Unstable regimes for a Bose-Einstein condensate in an optical lattice

    Full text link
    We report on the experimental characterization of energetic and dynamical instability, two mechanisms responsible for the breakdown of Bloch waves in a Bose-Einstein condensate interacting with a 1D optical lattice. A clear separation of these two regimes is obtained performing measurements at different temperatures of the atomic sample. The timescales of the two processes have been determined by measuring the losses induced in the condensate. A simple phenomenological model is introduced for energetic instability while a full comparison is made between the experiment and the 3D Gross-Pitaevskii theory that accounts for dynamical instability

    Nonlinear parametric instability in double-well lattices

    Full text link
    A possibility of a nonlinear resonant instability of uniform oscillations in dynamical lattices with harmonic intersite coupling and onsite nonlinearity is predicted. Numerical simulations of a lattice with a double-well onsite anharmonic potential confirm the existence of the nonlinear instability with an anomalous value of the corresponding power index, 1.57, which is intermediate between the values 1 and 2 characterizing the linear and nonlinear (quadratic) instabilities. The anomalous power index may be a result of competition between the resonant quadratic instability and nonresonant linear instabilities. The observed instability triggers transition of the lattice into a chaotic dynamical state.Comment: A latex text file and three pdf files with figures. Physical Review E, in pres

    Rotational Instabilities and Centrifugal Hangup

    Full text link
    One interesting class of gravitational radiation sources includes rapidly rotating astrophysical objects that encounter dynamical instabilities. We have carried out a set of simulations of rotationally induced instabilities in differentially rotating polytropes. An nn=1.5 polytrope with the Maclaurin rotation law will encounter the mm=2 bar instability at T/W0.27T/|W| \gtrsim 0.27. Our results indicate that the remnant of this instability is a persistent bar-like structure that emits a long-lived gravitational radiation signal. Furthermore, dynamical instability is shown to occur in nn=3.33 polytropes with the jj-constant rotation law at T/W0.14T/|W| \gtrsim 0.14. In this case, the dominant mode of instability is mm=1. Such instability may allow a centrifugally-hung core to begin collapsing to neutron star densities on a dynamical timescale. If it occurs in a supermassive star, it may produce gravitational radiation detectable by LISA.Comment: 13 pages (includes 11 figures) and 1 separate jpeg figure; to appear in Astrophysical Sources of Gravitational Radiation, AIP conference proceedings, edited by Joan M. Centrell
    corecore